

V23990-P580-A46-PM

preliminary datasheet

Mi*cosfi = 1

Iout (A)

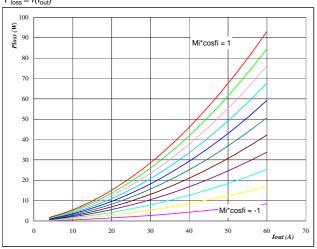
50

flowPIM 1 3rd gen

Output Inverter Application

1200V / 35A

3phase SPWM

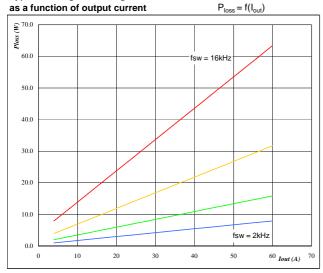

V_{GEon} = V_{GEoff} -15 V

 R_{gon} 16 Ω

 R_{goff} 16 Ω

Figure 1

Typical average static loss as a function of output current $P_{loss} = f(I_{out})$


 \mathbf{At} $T_j =$

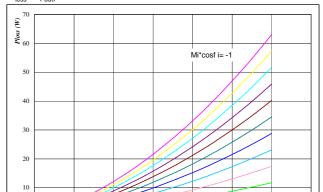
150 °C

Mi*cosφ from -1 to 1 in steps of 0.2

IGBT

Αt

DC link =


 $T_j =$ 150 °C 600

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

٧

Typical average static loss as a function of output current

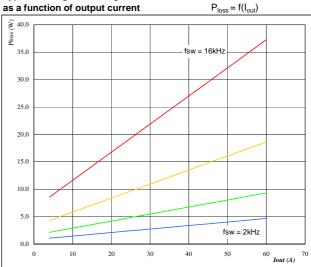
30

40

At T_j =

0

0


150 °C

10

 $\mbox{Mi*}\mbox{cos}\phi$ from -1 to 1 in steps of 0.2

Figure 4 Typical average switching loss

as a function of output current

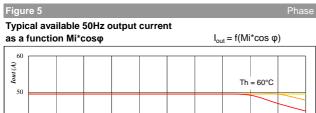
At T_j =

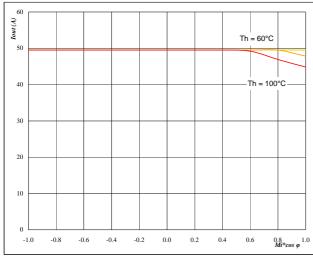
150 °C ٧

DC link = 600

 $f_{\rm sw}$ from 2 kHz to 16 kHz in steps of factor 2

V23990-P580-A46-PM

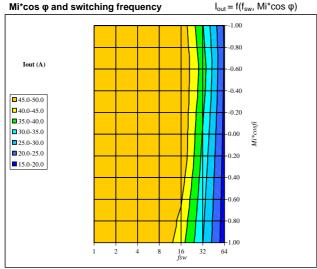

preliminary datasheet


flowPIM 1 3rd gen

Output Inverter Application

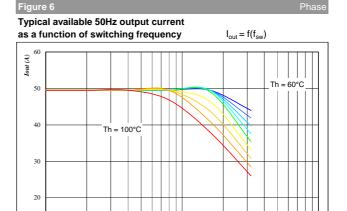
1200V / 35A

fsw (kHz)



Αt

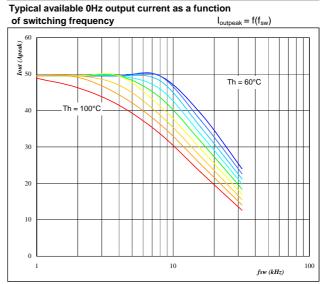
°C $T_j =$ 150 DC link = V 600 kHz $f_{sw} =$


60 °C to 100 °C in steps of 5 °C T_h from

Typical available 50Hz output current as a function of

Αt

 $T_j =$ 150 °C DC link = 600 90 °C


Αt

10

 $T_j =$ °C 150 DC link = 600 ٧

 $Mi^*\cos \varphi = 0.8$

 T_h from 60 °C to 100 °C in steps of 5 °C

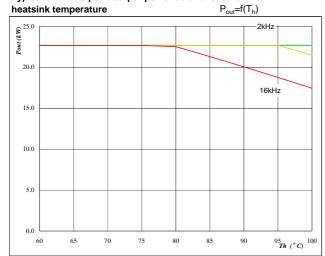
Αt

 $T_j =$ °C DC link = 600

 T_h from 60 °C to 100 °C in steps of 5 °C

Mi = 0

V23990-P580-A46-PM

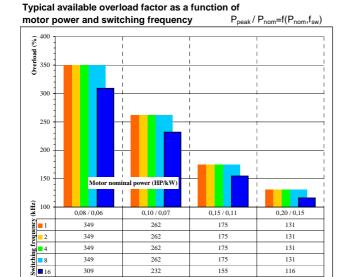

preliminary datasheet

flowPIM 1 3rd gen

Output Inverter Application

1200V / 35A

Αt


cos φ=

 $T_j =$ 150 °C 600 ٧

0.80

DC link = Mi =

2 kHz to 16 kHz in steps of factor 2 f_{sw} from

232

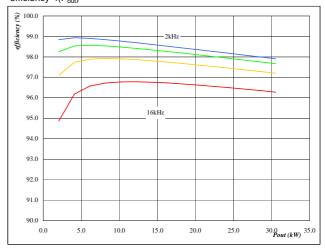
Αt

 $T_j =$ 150 °C

309

DC link = 600 Mi =

cos φ=


1 kHz to 16kHz in steps of factor 2 f_{sw} from

 $T_h =$ 90

Motor eff = 0.85

Figure 10

Typical efficiency as a function of output power efficiency=f(P_{out})

Αt

 $T_j =$ 150 °C

DC link = 600 ٧

Mi = 0.80 cos φ=

2 kHz to 16 kHz in steps of factor 2 f_{sw} from